
Personal Information

Name: Chaebean Yang

ID: 20230412

Email: kazed0102@kaist.ac.kr

Notice

Due to file size limitations, only the source code and README.md are included in the submitted zip

file. Please pull the full repository from the link below to access all project files.

To install dependencies, navigate to the project root directory and run:

http://git.prototyping.id/20230412/individual_project.git

cd svelteP5play

npm install

npm run dev

If you do not have Markdown Preview Enhanced installed, the Mermaid diagrams may not be visible

in the preview. In that case, please refer to the README.pdf file below.

If you do not have Markdown Preview Enhanced installed, the Mermaid diagrams may not be visible

in the preview. In that case, please refer to the README.pdf file below.

Git Information

Repository URL: http://git.prototyping.id/20230412/individual_project.git

Demo Video

Video URL: Game Demo Video

mailto:kazed0102@kaist.ac.kr
http://readme.md/
http://git.prototyping.id/20230412/individual_project.git
http://git.prototyping.id/20230412/individual_project.git
https://youtu.be/gW_LuNeC4WE

Game Screens

Start Screen

Game Play Screen

Gameover Screen

Game Clear Screen

Game Description

Basic Information

This game is based on the classic Snake game.

To make the gameplay more engaging, we incorporated elements of Aztec mythology—specifically

the story of Quetzalcoatl, the serpent-shaped god who becomes the fifth sun—through both graphics

and narrative.

Additionally, various items and more complex mechanics were introduced to increase difficulty and

enhance player experience.

How It Works

The user can control both the head and the tail.

Body length increases differently depending on the item collected.

Items provide different scores.

Speed increases as the score rises.

Obstacles appear randomly in the current direction of movement.

Head Control

The head is controlled using the arrow keys.

Key Effect

↑ The head faces upward

↓ The head faces downward

← The head faces left

→ The head faces right

Tail Control

The tail is controlled using the W, A, S, and D keys.

Key Effect

W The tail faces upward

S The tail faces downward

A The tail faces left

D The tail faces right

Items

Item Score Body Length Increase

Sun +15 +3

Gemstone +10 +2

Heart +5 +1

Speed

Score Range Speed Condition

< 70 p.frameCount % 7 === 0

< 90 p.frameCount % 5 === 0

≥ 90 p.frameCount % 3 === 0

Obstacles

Obstacles appear in the direction the snake is currently moving.

If the snake's head or tail collides with an obstacle, the player loses one life.

Game Clear Condition

Score reaches 100 or more.

Game Over Conditions

Life reaches 0.

Collision with walls.

Code Structure

The code is organized into two main parts: the Svelte frontend for UI/state management and the

 sketch.js file for game logic and rendering using p5.js.

Components

1. Game.svelte

Manages the game's state (start , play , clear , over)

Contains the main UI layout, life/score display, and <div id="game-canvas"> for the p5 sketch

Handles onMount() logic to attach and remove the p5 instance dynamically

<script>

 onMount(() => {

 const preventArrowScroll = (e) => {

 const keys = ["ArrowUp", "ArrowDown", "ArrowLeft", "ArrowRight",

 "w", "a", "s", "d", "W", "A", "S", "D"];

 if (keys.includes(e.key)) {

 e.preventDefault();

 }

 };

 window.addEventListener("keydown", preventArrowScroll, {passive: false});

 return () => {

 window.removeEventListener("keydown", preventArrowScroll);

 };

 });

</script>

Receives game data via receiveGameData() function and updates HUD

function receiveGameData(data) {

 life = data.life;

 score = data.score;

 if (data.state && data.state !== gameState && data.state !== "play") {

 gameState = data.state;

 }

 }

2. sketch.js

Contains the createSketch(p, onGameData) function that defines the p5 sketch

Handles all rendering logic: drawing the snake, items, obstacles, and walls

Manages key logic: movement, collision, growth, scoring, speed change

Sends current score/life/game state to Svelte using the onGameData() callback

The snake uses an array to manage the head, body, tail, and corner images according to the

situation, and to allow the body to grow in length.

Key Features in sketch.js

1. Grid System & Basic Setup

The canvas is divided into cells of size 20 using cellSize .

All coordinates are based on {x, y} positions in this grid system.

let cellSize = 20;

p.createCanvas(1000, 520);

p.imageMode(p.CENTER);

2. Snake as an Array

The snake is stored as an array of coordinates.

Movement is implemented using unshift() to add a new head and pop() to remove the tail.

When direction changes, a corner segment is drawn automatically.

let snake = [

 {x: 10, y: 5},

 {x: 9, y: 5},

 ...

];

snake.unshift(newHead);

if (!growNext) snake.pop();

for (let i = 0; i < snake.length; i++) {

 const seg = snake[i];

 const px = seg.x * cellSize + cellSize/2;

 const py = seg.y * cellSize + cellSize/2;

 p.push();

 p.translate(px, py);

 if (i == 0) {

 // head dorection setting

 }

 else if (i == snake.length - 1) {

 // tail direction setting

 }

 else {

 //body parts and corner case

 const prev = snake[i - 1];

 const next = snake[i + 1];

 const dx1 = seg.x - prev.x;

 const dy1 = seg.y - prev.y;

 const dx2 = next.x - seg.x;

 const dy2 = next.y - seg.y;

 const isCorner = dx1 !== dx2 || dy1 !== dy2;

 if (isCorner) {

 let angle = ...; // rotation angle logic

 p.rotate(angle);

 p.image(cornerImg, 0, 0, cellSize, cellSize);

 } else {

 const angle = dx1 == 0 ? p.HALF_PI : 0;

 p.rotate(angle);

 p.image(bodyImg, 0, 0, cellSize, cellSize);

 }

 }

 p.pop();

}

Segment rendering (head/body/corner/tail) is dynamically determined:

const isCorner = dx1 !== dx2 || dy1 !== dy2;

if (isCorner) p.image(cornerImg, 0, 0, cellSize, cellSize);

3. Obstacle Collision Logic

Obstacles are randomly placed ahead of the snake's direction with spacing and jitter.

Snake colliding with an obstacle (head or tail) reduces life.

if ((head.x == o.x && head.y == o.y) || tail.x == o.x && tail.y == o.y) {

 if (o.hit == null) {

 life -= 1;

 o.hit = p.frameCount;

 }

}

function makeObstacle() {

 // moving head or tail? which direction?

 let base;

 let dir;

 if (dirHead.x !==0 || dirHead.y !== 0) {

 base = snake[0];

 dir = dirHead;

 }

 else if (dirTail.x !== 0 || dirTail.y !== 0){

 base = snake[snake.length - 1];

 dir = dirTail;

 }

 else {

 return;

 }

 ...;

 //gap between the snake and an obstacle

 const gap = p.floor(p.random(3, 7));

 let newX = base.x + dir.x * gap + p.floor(p.random(-1, 2));

 let newY = base.y + dir.y * gap + p.floor(p.random(-1, 2));

 ...;

 }

Obstacles flash and disappear after impact.

4. Item Collection System

Items (heart , gemstone , sun) are generated at random, non-overlapping grid locations.

Each item provides different score and body growth effects.

if (item.type == "gemstone") {

 score += 10;

 growNext += 2;

}

Items are rendered with different images and refreshed automatically.

Interaction Diagram

Arrow Keys / WASD

onGameData()

UserInput

p5Sketch

GameLogic

Rendering GameSvelte

HUD

Flow Chart

start

retry

back to start try again

StartScreen

PlayScreen

GameOverScreen GameClearScreen

Challenges

I attempted to include background music based on the game state, but it could not be

implemented due to browser restrictions.

When rendering the corner segments in the snake array, the rotation did not work as expected

using theoretically calculated angles; I had to adjust the values empirically for it to display

correctly.

References

Mermaid.js documentation

p5.js reference

Svelte official tutorial

MDN: Styling the content

Svelte: Reactive statements

Svelte: If-else statement

MDN: Array.unshift() method

StackOverflow: Prevent arrow keys from scrolling in Svelte

Parts of this README were grammar-checked using ChatGPT and Google translator.

https://mermaid.js.org/
https://p5js.org/ko/reference/
https://svelte.dev/tutorial
https://developer.mozilla.org/ko/docs/Learn_web_development/Getting_started/Your_first_website/Styling_the_content
https://svelte.dev/docs/svelte/legacy-reactive-assignments
https://svelte.dev/docs/svelte/if
https://developer.mozilla.org/ko/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift
https://stackoverflow.com/questions/58534362/prevent-focused-div-from-scrolling-with-arrow-keys

Future Imporvements

If I had more time, I would like to explore the following features:

Adding background music to enhance the atmosphere of the game.

Changing the appearance of the snake dynamically based on the score.

Making the canvas layout responsive, so that it automatically adjusts to different screen sizes.

(Responsive design)

